January 22, 2014
Project No. 04.62130155

Sturgeon Services International
3120 Sturgeon Street
Bakersfield, California, 93308

Attention: Mr. Keith Kidwell Jr.

Subject: Phase I Services, Preliminary Geotechnical Engineering Study, East Cat Canyon Oil Field, Sisquoc Area, Santa Barbara County, California

Dear Mr. Kidwell:

This letter-report provides the results of our preliminary geotechnical engineering evaluation of the East Cat Canyon Oil Field located in the Sisquoc area of Santa Barbara County, California. Our services were performed general accordance with our proposal dated October 22, 2013. Authorization for our work was provided by Sturgeon Services International’s (SSI) Purchase Order with Fugro and by SSI’s Letter Agreement Request/Proposal with AERA Energy (AERA) dated October 23, 2013. This letter-report provides our preliminary geotechnical engineering evaluation and was performed as part of AERA’s Phase I Services for the project. Our services for the project also consisted of performing a geologic hazard assessment for the East Cat Canyon Oil Field and the findings and results of that study are provided under a separate cover.

We note that additional geotechnical engineering and geologic services will be required to develop design-level recommendations for the project. We understand that those services will be performed as part of AERA’s Phase II services for the project.

INTRODUCTION AND PROJECT DESCRIPTION

PROPOSED PROJECT

We understand that our assessment will be used to support Front End Load Engineering and Design (FELED) work for potential oil and gas development in the lease areas owned by Aera Energy, LLC (Aera) in the East Cat Canyon Oil Field. Potential development work in the oil field is expected to involve the following elements:

- Well pads and access roads,
- Pipelines,
- Office area,
- Central processing plant and warehouse, and
- Steam Generator.

Actual locations of the proposed facilities have not been determined. However, preliminary sites for the new office, processing plant and steam generator have been selected.
and were shown on a map provided to us via email. Access to the site is from Palmer Road and Cat Canyon Road.

SITE DESCRIPTION

The proposed oil field development area consists of eight lease areas located within Sections 19, 20, 28, 29, 31, and 32 of Township 9N/Range 32W, SBBM. The lease areas are shown on Plate 1 - Location Map - East Cat Canyon Area. That map also shows the extent of development in the area (roads, oil-well access roads and pads, the location of residential homes, industrial developments, very limited agricultural development, and drainage catchments.

The topography of the area consists of a series of north-south aligned subdued hills with elevations ranging from about +500 to +1,000 feet above mean sea level (MSL). Cat Canyon Creek, which is the principal stream in the area, is intermittent and flows to the north toward the community of Sisquoc. That creek, as well as those in Long Canyon and Olivera Canyon, is well entrenched along most of its course.

WORK PERFORMED

The scope of work for this preliminary geotechnical study consisted of the following tasks:

- Evaluating data and discussion of geologic conditions and hazards at the East Cat Canyon Oil Field site summarized in our Preliminary Geologic Hazards report (Fugro 2013),
- Site reconnaissance and marking potential locations for geotechnical drilling and sampling,
- Utility clearance and coordination with AERA, SSI staff and our drilling subcontractor regarding the proposed field work,
- Excavating, sampling, and logging six hollow-stem auger drill holes at selected locations within the study area. The drilling and sampling activities were performed by our subcontractor, S/G Drilling of Lompoc, California. Drill holes were excavated to depths ranging from about 15 feet to 30 feet below the ground surface. The approximate locations of the geotechnical drill holes are shown on Plate 2 – Drill Hole Location Map.
- Performing geotechnical laboratory tests on selected samples recovered from the drilling and sampling program,
- Performing analytical (chemical tests) on selected sampled recovered during the exploration program that appeared to have a petroleum odor,
- Characterizing the geotechnical conditions from the drilling and laboratory data and developing preliminary geotechnical recommendations for used in the FELED work
Preparing this letter-report summarizing our findings and preliminary recommendations.

GEOLOGIC SETTING AND SUBSURFACE CONDITIONS

The regional geologic conditions in the East Cat Canyon Oil Field are discussed in our Preliminary Geologic Hazards report (Fugro 2013). As described in that report the geologic conditions in the study area consist of predominantly flat lying to slightly folded sequence of Pliocene and Pleistocene formations consisting of the Carreaga and Paso Robles Formations. Older alluvial deposits are present on the tops of ridges and hills and deposits of Recent colluvium and alluvium are also present in the project area in the tributary canyons and valley floors. The subsurface formations and stratigraphic relationships as mapped by Dibblee (1994) are shown on Plate 3- Regional Geologic Map. A more detailed geologic map of the study area was generated as part of our Preliminary Geologic Hazards report. That geologic map is provided herein on Plate 4 – Geologic Map.

Carreaga Formation (Tcc/Tcg). As shown on Plates 2 and 3, the Careaga Formation crops out as a linear band along the southerly edge of the study area and is divided into two members; the Cebada and the Graciosa Members. The Cebada fine-grained lower member consists primarily of very uniform fine-grained to very-fine-grained massive sandstone, which is light gray to yellow in color. Small stringers of shale pebbles and fossils are abundant. The Graciosa Member commonly consists of coarse-grained sandstone with thin stringers of gravel.

Drill holes DH-1A and DH-4 were excavated into Carreaga (Graciosa Member) Formational materials. As observed from those drill holes, the Graciosa Member generally consists of soft, slightly to moderately weathered, massive sandstone and sandy claystone with gravel-size fragments of rock likely derived from the Monterey Formation. From a geotechnical engineering perspective, the material can be described as dense to very dense silty sand and clayey sand with gravel to stiff to hard sandy lean clay with gravel. Where encountered, the Carreaga Formational materials extended to the maximum depth explored.

Paso Robles Formation (QTp). The Pleistocene-age Paso Robles Formation is non-marine and primarily consists of poorly consolidated stream-deposited lenticular beds of gravel, sand, silt, and clay. The Paso Robles Formation crops out in most of the project area and conformably overlies the Careaga Formation and consists of very poorly sorted and heterogeneous (i.e., a wide range of grain size materials) mixtures of cobbles, gravel, and sand in a clay matrix. The formation is exposed in numerous cut slopes throughout the study area. The Paso Robles Formation is gently folded (with dips less than about 10 degrees).

Drill holes DH-1B and DH-2B were excavated into Paso Robles Formational materials. As observed from those drill holes, the Paso Robles Formation is similar to the Carreaga Formation and generally consists of soft, slightly to moderately weathered, massive sandstone and sandy claystone with gravel-size fragments of rock likely derived from the Monterey Formation. From a geotechnical engineering perspective, the material can be described as dense to very dense silty sand and clayey sand with gravel to stiff to hard sandy lean clay with gravel. Where encountered, the Paso Robles Formational materials extended to the maximum depth explored.
Older Alluvium (Qoal). Older alluvial deposits of late Pleistocene age are present on the tops of ridges and hills between Cat Canyon Road, Long Canyon Road, and Olivera Canyon Road. Drill holes DH-2A and DH-2B were excavated into older alluvial materials. The materials encountered in those drill holes generally consisted of dense to very dense poorly graded sand, silty sand, clayey sand and sandy silt with gravel, sand, and silt. In many locations, these deposits are well cemented.

Drill hole DH-2B likely extended into Paso Robles Formational materials at a depth of about 15 feet (elevation of about +1044 feet). Drill hole DH-2A encountered older alluvial soils to the maximum depth explored of 24 feet.

Colluvium (Qcol). Deposits of Recent colluvium also present in the project area in the tributary canyons and valley floors. Deposits of alluvium are also present on-site, however, for this report we have not differentiated between the colluvial and alluvial deposits. Colluvial soils were encountered in drill holes DH-3, DH-1A, and possibly DH-1B. In DH-1A and DH-1B the colluvial soils were encountered to depths of about 10 feet and those materials were underlain by Plio-Pleistocene formational materials. In DH-3, colluvial soils were encountered to the maximum depth explored of about 31 feet below the ground surface. The colluvial deposits generally consist primarily of loose to medium dense poorly sorted mixtures of sand and gravel with some fine-grained materials. The thickness of those deposits likely vary from relatively limited (less than about 10 feet) in slope areas and minor drainage swales to greater than about 30 to 50 feet in more significant drainage and collection areas.

Artificial Fill. Throughout the oil field area, local deposits of artificial fill are present. Those fill materials were commonly placed to facilitate the construction of drilling and production pads, and access roads. The fill deposits appear to consist of locally derived earth materials that were typically placed in an uncompacted state. In some locations, the fill materials appear to contain concrete and other construction debris.

Groundwater Conditions. Groundwater was not encountered in the site-specific geotechnical drill holes excavated to depths of up to 30 feet and performed as part of our preliminary geotechnical engineering evaluation study. In addition, data reported in Fugro (2012) suggests the depth to groundwater within the study area is anticipated to be greater than 100 to 200 feet below the ground surface. Although the depth to groundwater is anticipated to be relatively deep, there is a possibility for areas or zones of perched groundwater to be present at shallow depths (that is less than 30 feet deep) on at least a seasonal basis. Perched groundwater can occur in drainage channels or where changes in soil type or permeability occur within soil or rock materials. Groundwater seepage can occur where perched water daylights in cuts or at the ground surface.

PETROLEUM HYDROCARBON MATERIALS

Because the site has been actively producing hydrocarbon products for decades, it is likely that hydrocarbon-contaminated soil is present locally. We also understand that oil sands were placed in several of the canyon areas on site. In addition, petroleum hydrocarbon odors were noted during drilling and sampling work in three of the six site-specific drill holes excavated as part of our preliminary geotechnical engineering evaluation study (drill holes DH-2A, DH-2B, and DH-3). Analytical chemical tests were performed on three samples (DH-2A at 20.5 ft, DH-
2A at 21.5 ft, and DH-3 at 15 ft) to provide additional information on the petroleum hydrocarbons in the soil. The results of the tests are provided in Appendix C – Results of Analytical Testing. We note that the samples were collected using typical geotechnical sampling methods and were not placed in air tight containers or maintained in a chilled environment. However, the tests provide some relevant data for future evaluation of this issue.

In general, we note that soils containing petroleum hydrocarbons or other substances common to historical oilfield development may locally be present throughout the site and should be evaluated where new construction is planned.

SEISMIC SETTING AND INPUT TO SEISMIC DESIGN

No active faults have been mapped by others within the project boundaries and no faults were observed on the site during our reconnaissance surface mapping. However, two concealed older faults have been mapped through the project area (Plate 3) on the basis of published oil exploration data (California D.O.G., 1961; 1974; Hall, 1981; and Lettis et al., 2004).

The concealed northeast-dipping, normal fault mapped through the northeastern portion of the project area is referred to as the Garey fault (Hall, 1981). The concealed northeast-dipping, normal fault mapped through the southwestern portion of the area is unnamed on published maps (California D.O.G., 1974), but locally referred to as the Fuglar fault. A cross-section of the Olivera Canyon Area of the Cat Canyon oil field (California D.O.G., 1961) shows that the Garey fault only cuts rocks older than early Pliocene, therefore that fault would not be considered active. A cross-section of the East Area of the Cat Canyon oil field (California D.O.G., 1961) shows a similar pre-early Pliocene age for the Fuglar fault through the southwestern area, but California D.O.G. (1974) suggests that additional faulting (with a different sense of slip) may extend upward into the base of the Carreaga Formation rocks of late Pliocene age. In either case, the Fuglar fault would not be considered active. Consequently, neither of those two onsite faults are considered likely to pose a ground-surface fault-rupture hazard.

The site is located in California’s seismically active central coast region and there are a number of active faults in the region that have the potential to produce strong ground motion at the site. Regional faults in the study area are shown on Plate 5 - Regional Fault Map. A list of those faults within about 50 miles of the area, along with selected fault parameters, is presented in Table 1.
Table 1. Seismogenic Fault Sources

<table>
<thead>
<tr>
<th>Fault Name</th>
<th>Fault Type</th>
<th>Distance (miles)</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Luis Range</td>
<td>Reverse</td>
<td>3</td>
<td>7.2</td>
</tr>
<tr>
<td>Casmalia (Orcutt Frontal)</td>
<td>Reverse</td>
<td>5</td>
<td>6.7</td>
</tr>
<tr>
<td>Los Alamos – West Baseline</td>
<td>Thrust</td>
<td>5</td>
<td>6.9</td>
</tr>
<tr>
<td>Lions Head</td>
<td>Reverse</td>
<td>8</td>
<td>6.8</td>
</tr>
<tr>
<td>Santa Ynez</td>
<td>Strike Slip</td>
<td>21</td>
<td>7.2</td>
</tr>
<tr>
<td>Los Osos</td>
<td>Reverse</td>
<td>23</td>
<td>7.0</td>
</tr>
<tr>
<td>Hosgri</td>
<td>Strike Slip</td>
<td>26</td>
<td>7.3</td>
</tr>
<tr>
<td>San Juan</td>
<td>Strike Slip</td>
<td>29</td>
<td>7.1</td>
</tr>
<tr>
<td>Red Mountain</td>
<td>Reverse</td>
<td>31</td>
<td>7.4</td>
</tr>
<tr>
<td>Mission Ridge – Arroyo Parida – Santa Ana</td>
<td>Reverse</td>
<td>35</td>
<td>6.9</td>
</tr>
<tr>
<td>North Channel</td>
<td>Thrust</td>
<td>36</td>
<td>6.8</td>
</tr>
<tr>
<td>Rinconada</td>
<td>Strike Slip</td>
<td>36</td>
<td>7.5</td>
</tr>
<tr>
<td>Pitas Point</td>
<td>Reverse</td>
<td>37</td>
<td>7.3</td>
</tr>
<tr>
<td>San Andreas</td>
<td>Strike Slip</td>
<td>40</td>
<td>8.1</td>
</tr>
<tr>
<td>Santa Ynez (East)</td>
<td>Strike Slip</td>
<td>43</td>
<td>7.2</td>
</tr>
</tbody>
</table>

The peak ground accelerations with a 475-year and a 2,475-year return period were estimated for a location near the south central boundary of the area shown on Plate 3 (latitude: 34.8237, longitude: -120.2895) using the U.S. Geological Survey’s 2008 Interactive Deaggregations web site. Those values, assuming the site conditions are represented by a $V_s(30)$ of about 400 m/sec, are listed in Table 2 below.

Table 2. Preliminary Probabilistic Ground Motions

<table>
<thead>
<tr>
<th>Return Period</th>
<th>Peak Ground Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>475 years</td>
<td>0.26</td>
</tr>
<tr>
<td>2,475 years</td>
<td>0.49</td>
</tr>
</tbody>
</table>

The design motion parameters for use with the 2013 California Building Code were estimated using the U.S. Geological Survey’s Seismic Design Maps & Tools website. Table 3 summarizes those parameters estimated for a location near the south central boundary of the area shown on Plate 3 (latitude: 34.8237, longitude: -120.2895). Based on our reconnaissance-level effort, the geologic site conditions could potentially meet the criteria for either Site Class C or D conditions and code-based seismic criteria are provided in Table 3 for both Site Class C and D conditions.
Table 3. Preliminary Building Code Seismic Design Parameter

<table>
<thead>
<tr>
<th>2010 Building Code Seismic Parameter</th>
<th>Site Class C Value (g)</th>
<th>Site Class D Value (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_S</td>
<td>1.116</td>
<td>1.116</td>
</tr>
<tr>
<td>S_{MS}</td>
<td>1.116</td>
<td>1.176</td>
</tr>
<tr>
<td>S_{DS}</td>
<td>0.744</td>
<td>0.784</td>
</tr>
<tr>
<td>S_1</td>
<td>0.425</td>
<td>0.425</td>
</tr>
<tr>
<td>S_{M1}</td>
<td>0.585</td>
<td>0.670</td>
</tr>
<tr>
<td>S_{D1}</td>
<td>0.390</td>
<td>0.446</td>
</tr>
</tbody>
</table>

SOIL LIQUEFACTION AND SEISMICALLY INDUCED SETTLEMENT

Liquefaction. Seismically induced liquefaction is a phenomenon that commonly affects loose, granular materials below the groundwater table. Seismic shaking causes transient shear stresses in the soil deposits, which in-turn result in partial densification of the loose materials. As the saturated materials densify, pore water pressures can increase causing the effective shear strength of the soil to reduce. If pore pressures build to a significant level during or shortly after an earthquake event, the soil may begin to behave like a viscous fluid and result in lateral ground movement. In addition, pore pressure dissipation following the earthquake shaking may be accompanied by consolidation, which can cause ground settlement.

On the basis of their Plio-Pleistocene age and sampler blow count data (N-value data) obtained from our site-specific soil drill holes, the older alluvium, and Paso Robles and Carreaga Formations are not likely to be susceptible to earthquake induced liquefaction or seismic settlement.

Sampler blow count (N-value) data from our site-specific geotechnical engineering drill holes indicate the colluvial and alluvial soils could be susceptible to liquefaction. However, the depth to groundwater at the locations explored exceeded a depth of 30 feet and liquefaction is not a hazard for soils located above the groundwater level. However, if alluvial and colluvial deposits present in the canyon and valley areas are or were to become saturated, those deposits are likely to experience earthquake-induced liquefaction and settlement associated with strong ground shaking events. Site-specific geotechnical exploration and analyses will be needed to determine the potential for liquefaction and seismic settlement.

Seismic Settlement. Settlement from earthquake ground shaking can also occur in uncremented, granular soils above the groundwater. A description of the settlement caused by densification of the granular soils and procedures to evaluate the potential magnitude of settlement that could occur is provided in Tokimatsu and Seed (1978), Pradel (1998), and others. On the basis of the soil conditions encountered in our preliminary drill holes, we believe the potential for seismic settlement of the formational and older alluvial soils in the study area is relatively low. However, there is a potential for seismic settlements to occur in the existing unsaturated colluvial soils and artificial fill if those materials are subjected to strong ground shaking. On a preliminary basis, we anticipate the magnitude of settlement would likely be on
the order of an inch or less. Settlement from seismic shaking (and liquefaction) should be considered cumulatively with estimated settlements from static loads.

HYDROCONSOLIDATION POTENTIAL

Hydroconsolidation (collapse) is a phenomenon whereby unconsolidated soil materials settle (collapse) upon the addition of moisture. The moisture may come from the infiltration or seepage of water from the ground surface, or from a rise in the groundwater level. Commonly, such soil materials are slightly cemented by chemical precipitates or clayey minerals, and the addition of moisture causes those cementing materials to dissolve or soften allowing the soil particles to consolidate. Often collapsible soils exhibit visible pore spaces when undisturbed samples are broken open.

Because of their age, the Paso Robles and Carreaga Formation materials and older alluvium are not likely to be subject to hydroconsolidation. However, deposits of colluvium and alluvium on the site may be susceptible hydroconsolidation.

LANDSLIDING AND SLOPE STABILITY

Our geologic reconnaissance mapping of the site has identified several locations that have geomorphology that suggests the presence of past landsliding. Those mapped landslide areas that are queried on Plate 4 are more speculative than the non-queried areas. No subsurface exploration has been performed to confirm the existence of the mapped landslides shown on Plate 4. Because of the generally granular nature of the onsite materials and the gentle dips of the bedding within the Paso Robles and Carrega Formations, we suspect that most of the onsite landslides are likely to be rotational failures, as opposed to translational failures.

Throughout the area, there are numerous manmade cut slopes created to facilitate hydrocarbon production. Most of those slopes are relatively steep (1H:1V or steeper) and they commonly exhibit signs of raveling, slumping, and erosion.

Deposits of colluvium are present on the natural slopes throughout the area. Where thick deposits of colluvium were recognized, they are mapped on Plate 3 (map unit Qc). Where present on slopes, the colluvium is generally unstable and creep-prone.

If possible, areas with suspected landslide geomorphology should be avoided. However, if structures are proposed in areas of possible landsliding, subsurface exploration should be performed to confirm the presence and geometry of the landslide deposits, and to evaluate the stability of the materials. If landslide deposits are confirmed and their natural stability is found to be inadequate, removal and replacement with compacted fill, providing structural support, or compacted-fill buttressing are possible mitigation measures.

Areas of colluvium on slopes above proposed developments should be removed or supported. Because most of the earth materials on the site are generally granular and uncemented, proposed unreinforced cut and fill slopes probably should be graded at inclinations of 2H:1V or flatter. Because of the granular and uncemented nature of the onsite materials, cut and fill slopes should be properly vegetated and drainage benches and brow ditches should be
incorporated into the slope design and layout. Stability fills placed over cut slopes may also be required.

EXPANSIVE SOIL

Expansive soils are clayey materials that expand when wetted. Most of the bedrock materials on the site are granular; therefore the colluvial and alluvial materials derived from them are also generally granular. Because there is likely to be a limited amount of clayey soil present on the site, the potential for highly expansive soils is limited.

PRELIMINARY GEOTECHNICAL RECOMMENDATIONS

Recommendations for Grading, Earthwork, and Excavation

Excavation Conditions. The drill holes for this study were excavated using a conventional truck-mounted hollow-stem-auger drilling rig and our explorations generally encountered loose to very dense silty sand, clayey sand and sandy silt with gravel and stiff to hard sandy lean clay with gravel. Groundwater and groundwater seepage was not noted in our explorations to the maximum depth explored of about 30 feet below the ground surface.

On the basis of our understanding of the site conditions, we anticipate that planned excavations can be constructed using conventional heavy-duty earthmoving equipment that is in good working condition. We note that temporary control of groundwater is probably not required for general, relatively shallow excavations. However, local control of seepage from perched or transient groundwater could be required, especially if grading work will occur in the winter months. Excavations should be kept free of water and surface runoff should be directed away from open excavations and should not be allowed to flow down slopes.

Clearing and Grubbing. Organic material and vegetation, hazardous materials, old foundations, unsuitable fill materials or other deleterious materials should be stripped, removed and wasted from construction areas. Abandoned underground structures such as wells, pipelines, old foundations, etc., not located prior to grading should be removed or treated in a manner prescribed by the controlling governmental agencies.

General Overexcavation and Remedial Grading. After the clearing and grubbing work has been completed and the soil materials have been removed to the design subgrade level, additional excavation and grading should be performed to help provide for more uniform conditions beneath the proposed structures. The overexcavation and remedial grading should be planned to remove existing artificial fill and colluvial soils beneath proposed structures and areas of development. The depth of overexcavation (remedial grading) required to remove existing fill and colluvial soils will vary across the site based on the soil conditions and proposed site grading. However, on a general basis and for initial planning purposes, overexcavation depths of about 5 feet below existing grade should be anticipated. However, overexcavation depths could locally exceed 10 feet below existing grade.

Overexcavation should extend laterally beyond the structure equal to a distance of at least 5 feet or the depth of the overexcavation, whichever is greater. Temporary shoring should
be installed as required to perform the overexcavation work. Loose, soft, or unsuitable materials, if encountered at the base of the overexcavation, should be removed.

Subgrade Conditions. Subgrade conditions at the base of the overexcavation will likely consist of silty sand, clayey sand and sandy lean clay with gravel. On the basis of our observations, we anticipate the subgrade soils will be relatively firm and capable of being scarified and compacted. However, there is some risk that the subgrade soils could be moist and potentially unstable and “pump” under the loads from compaction equipment. Measures to stabilize the subgrade may be required and provisions for stabilization work should be provided in the contract documents. Stabilization measures could potentially consist of placing compacted aggregate base or crushed rock on the unstable subgrade alone or in combination with geogrids or geotextile fabric.

Subgrade Preparation. Prior to the placement of fill materials, the excavation subgrade should be cut neat and observed by the geotechnical engineer. Loose, soft or unsuitable materials, if encountered at the planned subgrade level, should be removed and replaced with compacted fill. If no further overexcavation or soil removal is needed (as determined by the geotechnical engineer), the subgrade should be scarified to a depth of 6 inches, moisture-conditioned of 0 to 3 percent above optimum moisture, and recompacted to at least 95 percent of the maximum dry density determined from ASTM D1557.

Bedrock or dense cobble or boulder materials, where exposed in the subgrade may not necessarily need to be scarified and compacted, although the geotechnical engineer should review the exposed subgrade conditions and provide supplemental recommendations for subgrade preparation, if needed.

Fill Selection and Compaction

Fill Placement. Fill materials should be placed in layers that, when compacted, shall not exceed 6 inches in compacted thickness. Each layer should be spread evenly, moisture conditioned to within 0 to 3 percent above the optimum moisture content, and processed and compacted to obtain a uniformly dense layer. The fill should be placed and compacted on near-horizontal planes to a minimum of 90 percent of the maximum dry density determined from ASTM D1557 (relative compaction).

Fill placed on ground inclined at or steeper than 5h:1v should be properly keyed and benched into competent existing soil and bedrock materials. Existing fill and colluvial soils should be stripped from the slope area to be graded prior to placing compacted fill. A keyway fill should be constructed at the toe of the slope. For planning purposes, keyways should be a minimum of 15 feet wide and embedded at least 5 to 10 feet below the adjacent grade. Subdrainage should be incorporated into the keyway and may need to extend higher up the slope depending on the site conditions and slope design. Fill over cut slopes should be designed to incorporate a minimum 8-foot wide stability constructed in the cut portion of the slope. As discussed previously, we recommend that cut and fill slopes be planned at an inclination of 2h:1v or flatter. Steeper slopes may be possible where reinforcement such as soil nails or geogrids are incorporated into the design.
In addition, grading and site development should be planned to avoid placing structures over cut-fill transitions. Where those situations occur, the cut portion of the graded area should be overexcavated in a manner that minimizes the variation in fill thickness beneath the proposed structure footprint.

Select Fill Requirements. On-site soils primarily consist of silty sand, clayey sand and sandy lean clay with gravel. In general, we anticipate that those materials can be used as general fill beneath the proposed structures. However, there is a potential for moderately to highly plastic soils to be present on-site and, in general, we believe those soils will not be suitable for use as backfill for below structures, for below grade walls, or retaining walls. In addition, their use in embankment fill should be evaluated by the geotechnical engineer.

In our opinion, fill materials used as backfill for the below grade walls should be select granular soils (silty sand, sand with silt, or sand) with less than 20 percent passing the number 200 sieve. In addition, select fill should be free of oversize rock greater than three inches in diameter, organic material, trash or debris, and other deleterious materials. We note that on-site soils can be used as select fill provided the material meets these requirements. We recommend the geotechnical engineer should evaluate the suitability of select fill materials prior to their use.

Temporary Support Considerations

General. The contractor shall be responsible for all safety issues related to temporary slopes. Sloped excavations may be used for the proposed excavations where space is available. Temporary slopes should be monitored continuously by the contractor. Loose or unstable soil should be removed immediately. Temporary slopes and excavations should conform to OSHA regulations and other applicable local ordinances and building codes, as required. As a guide to the design of temporary excavations, the soils at the RVTWTP site can be considered to be Type B soils per OSHA classifications.

Shored Excavations. In areas where sloped excavations are not practical, shored excavations will be required. As noted above for sloped excavations, the contractor shall be responsible for the design, installation, and performance of shored excavations. In our opinion, relatively shallow temporary excavations (generally less than about 10 to 15 feet) can likely be shored using a cantilever shoring. Shoring for deeper excavations will likely need to incorporate lateral bracing or tieback anchors.

Generalized soil parameters and recommendations are provided below and are intended to aid in the contractor’s evaluation and design of shoring systems.

<table>
<thead>
<tr>
<th>Depth Range (ft)</th>
<th>Soil Material Type (USCS Classification)</th>
<th>Shear Strength Envelope</th>
<th>Total Soil Unit Weight (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 30 ft</td>
<td>SM/SC</td>
<td>Φ = 30°, C = 150 psf</td>
<td>125</td>
</tr>
</tbody>
</table>
PRELIMINARY FOUNDATION DESIGN RECOMMENDATIONS

Introduction

We anticipate the proposed structures will be supported on shallow foundations (isolated and continuous footings), drilled cast in-place piles (drilled piers), or relatively rigid concrete mat-type foundations. In our opinion, those type of foundations are suitable provided recommendations from the geotechnical engineering consultant are followed and locally accepted, good quality, construction techniques are utilized. Preliminary recommendations for those foundation systems are outlined herein.

Shallow Foundation Design Criteria

Minimum Shallow Footing Embedment. We recommend that continuous and isolated column footings be founded on competent bedrock, older alluvial soils, or compacted fill placed as recommended in this report. Foundations for the proposed structures should be embedded at least 2 feet below the lowest adjacent grade or slab elevation, whichever is lower.

Continuous footings should be at least 24 inches wide and isolated footings should be at least 3 feet wide. The footing thickness should be determined by the structural engineer, but should not be less than 12 inches thick. Assuming footing elements are embedded to at least the minimum recommended depths noted above, shallow foundations and mats can be designed using a maximum allowable bearing pressure of 2,000 psf.

The recommended value for allowable bearing pressure provides an estimated factor of safety against shear failure in excess of about 3. A one-third increase in the allowable bearing pressure may be used for transient loads such as seismic or wind forces.

Sliding and Passive Resistance. Ultimate sliding resistance generated through a soil/concrete interface can be computed by multiplying the total dead weight structural loads by a coefficient of 0.35. The frictional resistance can be increased by 1/3 for wind or seismic loading conditions.

Passive Resistance. Passive resistance developed from lateral bearing of below-grade walls or footings bearing against compacted backfill or undisturbed native materials. Passive resistance can be estimated using an equivalent fluid pressure of 300 psf. The passive resistance value is considered applicable to both static and short term loading conditions.

Safety Factors. Sliding resistance and passive pressure may be used together without reduction provided a minimum factor of safety of 1.5 is used for foundation overturning and sliding.

Settlement Estimates. Settlement will occur as static loads are applied to the earth through foundation elements. Both immediate (elastic) and long-term (consolidation) settlements may occur. Because subsurface materials are generally granular, settlements are generally expected to occur shortly after loads are applied. Total settlements of shallow foundations supporting static loads of up to about 200 kips and designed in accordance with the recommendations provided herein are not anticipated to exceed about 1 to 1-1/2 inches.
Differential settlements between similarly loaded foundations are not anticipated to exceed about one-half the estimated total settlement and should not exceed about 1/2 inch in 30 feet.

The above static settlement estimations do not take into consideration potential settlement that could occur as a result of seismic settlement or from potential hydroconsolidation discussed previously.

Modulus of Subgrade Reaction. The modulus of subgrade reaction was estimated using information provided in NAVFAC DM 7.1 (U.S. Navy 1986) and Terzaghi (1955). In our opinion, an elastic modulus of subgrade reaction of 150 pounds per cubic inch (pci) can be used for design. The modulus of subgrade reaction value is for a 1-foot-square plate, and should be scaled for mat size and shape, assuming sand subgrade conditions. On the basis of our interpretation of the subsurface conditions, the Young’s Modulus and Poisson’s Ratio of the native soils can be assumed equal to 5,000 psi and 0.3, respectively.

Drilled Shaft Foundations

Axial Capacity. On a preliminary basis, we believe that drilled cast-in-place piles or piers are a feasible foundation system that could be used to support proposed structural improvements at the site. We suggest that drilled shaft foundations be designed as straight shafts assuming the estimated frictional resistance acting along the sides of shafts alone. The end bearing resistance should be neglected so that downhole inspection and special cleaning of drilled shaft excavations will not be required. Bells at the bottom to the drilled shafts, typically used to provide additional end bearing capacity, are not recommended.

For preliminary input, we recommend drilled shafts be sized assuming an ultimate unit frictional resistance of 75D (in psf) where D is the depth below the top of the pier in feet (e.g. ultimate frictional resistance at 10 feet below the pier head/ground surface is equal to 750 psi). The unit frictional resistance can be assumed to increase linearly with depth up to a maximum value of 2,000 psf. The ultimate capacity of the pier (in pounds) can be estimated as the sum of the unit friction acting along the embedded length of the pier times the pier diameter.

The uplift capacity of drilled shaft foundations can be estimated as one-half of the maximum allowable downward frictional capacity. The frictional capacity can be increased by 1/3 when considering seismic or other transient loads.

Settlement of Drilled Shaft Foundations. Settlement of drilled shaft foundations will likely consist of elastic compression of the pile itself plus the elastic settlement of the materials within the alluvial fan deposits. We estimate that settlements of drilled shaft foundations should be less than approximately 1 inch total and approximately 1/2 inch differential between adjacent foundation elements.

Lateral Load Capacity of Drilled Shaft Foundations. We performed p-y type lateral pile analyses using LPILE Plus 6.0 (Ensoft 2011) in order to estimate pile head deflection and maximum bending moment as a function of lateral load at the pile head. Lateral load capacity results were derived assuming a granular soil profile. No factors of safety have been applied to the estimated soil properties or to the resulting pile response.
The lateral pile analyses were completed for a generic design case assuming an isolated 24-inch-diameter drilled shaft with a preliminary embedded length of 40 feet and an assumed axial load of 50 kips. The results indicate that lateral loading at the pile head of 15 kips and 20 kips could result in pile head deflections of 1/4 inch and 1/2 inch, respectively for free head conditions. Applied lateral loads at the pile head of about 30 kips and 50 kips could result pile head deflections of 1/4 and 1/2 inches, respectively for fixed head conditions.

We note that group effects will impact the lateral load capacity of the entire pile group. When estimating the lateral capacity of a drilled shaft group with a pile spacing of 3 pier diameters, the sum of the individual lateral capacities for a given deflection should be multiplied by 0.8 in the first row of shafts, 0.4 in the second row, and 0.3 in the third and any subsequent rows. If the pile spacing is increased to 5 pile diameters, the sum of the individual lateral capacities for a given deflection should be multiplied by 1.0 in the first row of shafts, 0.85 in the second row, and 0.7 in the third and any subsequent rows.

GENERAL FLOOR SLAB ON GRADE RECOMMENDATIONS

Minimum Slab Thickness and Reinforcement. We recommend that all floor slabs, including mats, be reinforced. Slab thickness and reinforcement should be designed by the structural engineer to resist structural loading and to satisfy pertinent code, temperature, and shrinkage requirements. As a minimum, we suggest that slabs be at least 5 inches thick.

Vapor Barrier. Floor slabs that will be covered with moisture sensitive flooring (e.g., vinyl tiles) should be protected against moisture vapor flow by a vapor barrier. In order to reduce the risk of distress to moisture sensitive flooring or due to moisture vapor penetration of the floor slab, a continuous impermeable membrane of, at least, 15-mil polyethylene sheet or similar commercial moisture vapor barrier can be installed below the slab. The vapor barrier should be covered with a layer of clean coarse sand (such as washed concrete sand) or fine gravel to promote curing of the slab and to protect against penetration or damage to the vapor barrier. Slabs should be tested before the installation of the flooring and sealed as required.

RETAINING WALL RECOMMENDATIONS

Static Conditions

General. The proposed filter/clarifier building, the washwater recovery basin and feed pump station structures will incorporate below grade basement walls designed integral with the foundation system. We do not anticipate that typical free-standing retaining structures will be required for the project to accommodate changes in site grades. However, recommendations for free-standing retaining walls are provided in this report if they are needed.

Retaining structures that are free to rotate or translate laterally through a horizontal distance to wall height ratio of no less than 0.004 are referred to as unrestrained or cantilevered retaining structures. Such walls can generally move enough to develop active conditions. Retaining structures that are unable to rotate or deflect laterally are referred to as restrained or non-yielding walls. We have assumed that the below grade walls for the proposed project elements will be restrained and should be designed for at-rest conditions.
As indicated previously, we recommend that select material be used as backfill behind proposed walls. In general, we recommend that select material be placed behind the walls within a wedge extending up from the base of the wall at 1h:1v.

Lateral Pressures. Lateral earth pressures for the design of braced and cantilever walls are provided in Table 4 – Recommended Lateral Earth Pressures. The values are expressed in terms of equivalent fluid weight and are based on an assumption that the backfill materials behind retaining or below-grade walls will consist of compacted select material and granular soils as recommended previously. Drained conditions are based on the assumption that subsurface drainage will be provided to prevent the buildup of groundwater behind the wall and that eliminate hydrostatic pressures. Undrained conditions incorporate the potential for hydrostatic pressures to develop. Undrained conditions should be used for walls that will be below the groundwater level or where positive subsurface drainage cannot be provided.

<table>
<thead>
<tr>
<th>Backfill Slope Inclination Behind Wall</th>
<th>Equivalent Fluid Weights (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Active Conditions / Unrestrained Walls</td>
</tr>
<tr>
<td></td>
<td>Drained</td>
</tr>
<tr>
<td>Level Backfill</td>
<td>35</td>
</tr>
</tbody>
</table>

The equivalent fluid weights should be applied to a vertical plane passing through the back most part of the heel. The height of the vertical plane should extend from the point where the vertical plane intersects the ground surface down to the elevation of the lowest retaining wall foundation element (e.g., bottom of shear key or passive pressure resisting element).

Surcharge loads induce additional pressures on earth retaining structures. Uniform area surcharge pressures for below-grade walls may be assumed equal to 0.5 of the applied surcharge pressure. Lateral pressures for other surcharge loading conditions can be provided, if required.

Compaction Adjacent to Walls. Backfill within 5 feet, measured horizontally, behind the retaining structures should be compacted with lightweight, hand-operated compaction equipment to reduce the potential for creation of large compaction-induced stresses. If large or heavy compaction equipment is used, compaction-induced stresses can result in increased lateral earth pressures on the retaining walls in addition to those presented in Table 4. If anything but lightweight, hand-operated compaction equipment is to be used, further evaluation of the potential for compaction-induced stresses is recommended.

Backfill material should be brought up uniformly around the below-grade or retaining walls (i.e., the backfill should be at about the same elevation all around the wall as the backfill is placed). That is, the elevation difference of the backfill surface around the wall should not be greater than about 2 feet, unless the wall is designed for those differences.

Dynamic Earth Pressures. For unrestrained walls, the increase in lateral earth pressure acting on the wall resulting from earthquake loading can be estimated using the
Mononobe-Okabe theory, as described by Seed and Whitman (1970). That theory is based on the assumption that sufficient wall movement occurs during seismic shaking to allow active earth pressure conditions to develop. For restrained walls, the increase in lateral earth pressure resulting from earthquake loading also can be estimated using the Mononobe-Okabe theory. Because that theory is based on the assumption that sufficient movement occurs so that active earth pressure conditions develop during seismic shaking, the applicability of the theory to restrained or basement walls is not direct. Nevertheless, there is a supporting reference (Nadim and Whitman, 1992) that suggests the theory can be used for such walls.

In the Mononobe-Okabe approach, the total dynamic pressure can be divided into static and dynamic components. The estimated dynamic lateral force increase (based on seismic loading conditions) for either unrestrained or restrained walls may be taken as 12 x H^2 pounds per linear foot of wall. In the above formulation, we assumed the ground acceleration to be equal to the PHGA (or about 0.26g in units of gravity, g, as appropriate, and H is the height of wall below the ground surface in feet. The centroid of the dynamic lateral force increment should be applied at a distance of 0.6H above the base of the wall, while the static lateral force should be applied at a distance of one-third the wall height above the base of the wall base.

To estimate the total dynamic lateral force, the dynamic lateral force increase should be added to the static earth pressure force computed using recommendations for active lateral earth pressures presented previously. That recommendation is based on the concept that during shaking, earth pressures recommended for permanent conditions will be reduced to those more closely approximating active conditions.

Drainage Measures

Free-Draining Backfill. If drained lateral earth pressures are used for permanent conditions, then drainage measures must be implemented to help prevent the buildup of hydrostatic pressures behind the below-grade walls. This recommendation is in addition to using select material as backfill behind the walls.

For wall drainage, we recommend at least 2 feet (measured out from the back of the wall) of clean coarse-grained material be placed behind the wall. The free-draining backfill should consist of:

- "Pervious Backfill" conforming to Item 300-3.5.2, Standard Specifications for Public Works Construction (Greenbook, 2010);
- "Permeable Material" conforming to Item 68-1.025, Caltrans Standard Specifications (2010); or
- Crushed stone, sized between 1/4 and 1/2 inch.

Filter Fabric. A nonwoven filter fabric should be placed between the free-draining backfill and the soil or rock, compacted or otherwise, behind the free-draining backfill to protect against soil migration into the drain material. The filter fabric should conform to Section 213-4 of the "Greenbook," at least Type 180N. The filter fabric should be placed in general conformance with Section 300-9 for the "Greenbook."
Prefabricated Drainage Materials. In lieu of free-draining backfill materials of the types suggested above, manufactured drainage structures (e.g., Miradrain, manufactured by Mirafi, Inc., or similar) can be used against retaining or below-grade walls. Manufacturer recommendations for the installation of any of those products should generally be followed, although those recommendations should be reviewed by the geotechnical engineer.

Discharge. The drainage material behind retaining or below-grade walls should be hydraulically connected to the granular material and perforated drainpipe system. The entire drainage system should be tied to an exterior drainage exit.

Water Stops. Water stops should be installed in both expansion and/or construction joints along below-grade walls and foundation slabs.

Runoff. Provisions should be included for removal of surface runoff that may tend to collect behind the backs of the walls and for drainage of water away from the fronts of the walls. Also, provisions should be included to mitigate the infiltration of surface runoff into the free draining backfill by placing a minimum of 18 inches of fine-grained clayey soil (native lean to fat clay) compacted soil over the top of the free draining backfill.

CORROSION AND CEMENT SELECTION

Chemical tests to assess corrosion to metal and cement selection were performed on a selected sample of the near surface material recovered from DH-1A. The results of the corrosion tests are summarized below.

Table 5. Summary of Corrosion Test Results

<table>
<thead>
<tr>
<th>Drill Hole No.</th>
<th>Sample Depth (ft)</th>
<th>Material Type</th>
<th>Resistivity (ohms/cm)</th>
<th>PH</th>
<th>Chloride (ppm)</th>
<th>Sulfate (ppm / %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH-1A</td>
<td>5</td>
<td>Silty Sand</td>
<td>4837</td>
<td>6.3</td>
<td>3</td>
<td>100 ppm 0.010 %</td>
</tr>
</tbody>
</table>

The data acquired for this study suggest that the corrosion potential to concrete and ferrous pipe materials from the on-site soils is relatively low. The results suggest the soils are non-aggressive to concrete and that typical Type II cement appears suitable for structures in contact with on-site soils. Our preliminary evaluations of corrosion potential are based on guidelines described in Caltrans (2012). We recommend that additional data be gathered regarding the corrosion potential of the on-site soils.

LIMITATIONS AND REPORT USE

The preliminary recommendations and opinions presented in this letter-report were developed by Fugro Consultants, solely for SSI and AERA for use in the planning and preliminary design of proposed improvements at the East Cat Canyon Oil Field. The findings, opinions, and preliminary recommendations presented herein were prepared in accordance with generally accepted local geotechnical engineering practice.
Although information contained in this report may be of some use for other purposes, it may not contain sufficient information for other parties or uses. If any changes are made to the project as described in this report, the conclusions and recommendations in this report shall not be considered valid unless the changes are reviewed and the conclusions and recommendations of this report are modified or validated in writing by Fugro.

POTENTIAL VARIATION IN SUBSURFACE CONDITIONS

Earth materials can vary in type, strength, and other geotechnical properties between points of observations and exploration. Additionally, groundwater and soil moisture conditions also can vary seasonally or for other reasons. Therefore, we do not and cannot have a complete knowledge of the subsurface conditions underlying the site. The conclusions and recommendations presented in this report are based on the findings at the points of exploration, interpolation and extrapolation of information between and beyond the points of observation, and are subject to confirmation (to the extent possible) based on the conditions revealed during construction.

CLOSURE

We appreciate the opportunity to work with Sturgeon Services International and AERA Energy in the planning and preliminary design effort for future improvements at the East Cat Canyon Oil Field. Please contact us if you have any questions regarding the findings, opinions, or preliminary recommendations provided in our Phase I Preliminary Geotechnical Engineering Study.

Sincerely,

FUGRO CONSULTANTS, INC.

Gregory S. Denlinger, G.E.
Principal Geotechnical Engineer
Attachments:

Plates
Plate 1 - Location Map, East Cat Canyon Area
Plate 2 – Drill Hole Location Map
Plate 3 - Regional Geologic Map
Plate 4 – Geologic Map
Plate 5 – Regional Fault Map

Appendix A – Subsurface Exploration
Plate A-1 through A-6 - Log of Drill Hole
Plate A-7 – Key to Terms and Symbols Used on Logs

Appendix B – Laboratory Testing
Plate B-1 – Summary of Test Results
Plate B-2 – Grain Size Curves
Plate B-3 – Plasticity Chart
Plate B-4 – Direct Shear Results
Plate B-5 – Consolidation Test Results
Plate B-6 – Compaction Test Results

Appendix C – Results of Analytical Testing
REFERENCES

Dibblee, Thomas Jr. (1994), Geologic Map of the Sisquoc Quadrangle, Santa Barbara County, California, Prepared in cooperation with the California Department of Conservation, Division of Mines and Geology and the U.S. Geological Survey.

U.S. Navy (1986), Naval Civil Engineering Command, Design Manual 7.01, Soil Mechanics,

PLATES
Geologic Map of the Sisquoc Quadrangle, Santa Barbara County, California, (Dibblee, 1994).

BASE MAP SOURCE: Geologic Map of the Sisquoc Quadrangle, Santa Barbara County, California, (Dibblee, 1994).

LEGEND

- **Qtg**: Stream channel deposits
- **Qts**: Landslide debris
- **Qum**: Older Alluvium
- **Qtp**: Paso Robles Formation
- **Casa**: Careaga Sandstone (Graciosa Member) - massive gray-white to tan sandstone
- **Tca**: Careaga Sandstone (Cebada Member) - massive tan to yellow, soft, fine grained sandstone
- **Sisq**: Sisquoc Formation
- **Mon**: Monterey Shale

Formation Contact - dashed where inferred or indefinite
Fault - dashed where indefinite or inferred, dotted where concealed, relative vertical movement shown by UID (U = upthrown side, D = downthrown side), short arrow indicates dip of fault plane, sawteeth are on upper plate of low angle thrust fault
Anticline - dashed where inferred or indefinite
Syncline - dashed where inferred or indefinite

Strike and dip of beds:

- **Inclined**: 30
- **Vertical**: 0

Structure geometries shown:

- **Dashed where inferred or indefinite**

Deep Wells shown:

1. **Stone & Goodwin**
2. **R & G Oil Co., #15**
3. **R & G Oil Co., #16**
4. **Palmer-Stendel Oil Co., #7**
5. **Palmer-Stendel Oil Co., #10**
6. **Palmer-Stendel Oil Co., #20**
7. **Palmer-Stendel Oil Co., #9**
8. **Palmer-Stendel Oil Co., #12**
9. **Palmer-Stendel Oil Co., #6**
10. **Palmer-Stendel Oil Co., #4**
11. **Palmer-Stendel Oil Co., #11**
12. **Palmer-Stendel Oil Co., #5**
13. **Palmer-Stendel Oil Co., #2**
14. **Palmer-Stendel Oil Co., #3**
15. **Palmer-Stendel Oil Co., #18**
16. **Palmer-Stendel Oil Co., #20**
17. **Palmer-Stendel Oil Co., #5**
18. **Palmer-Stendel Oil Co., #10**
19. **Palmer-Stendel Oil Co., #20**
20. **Palmer-Stendel Oil Co., #20**

SOURCE: Section from Geologic Map of the Sisquoc Quadrangle, Santa Barbara County, California, (Dibblee, 1994).

REGIONAL GEOLOGIC MAP
East Cat Canyon Sisquoc Area
Santa Barbara County, California

PLATE 3
REGIONAL FAULT MAP
East Cat Canyon Oil Field, Sisquoc Area
Santa Barbara County, California

Legend
- County Limits

 Faults
- Active Fault, dashed where inferred
- Potentially Active Fault, dashed where inferred

Sources:
- Bryant, 2005
- Jennings, 1994
<table>
<thead>
<tr>
<th>Depth, ft</th>
<th>Sample No.</th>
<th>Material Symbol</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>1</td>
<td>COLUVIUM (Qcol)</td>
<td>Silty SAND (SM): loose, brown, dry, fine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td>2</td>
<td>CARREAGA FORMATION GRACIOSA MEMBER (Tcg)</td>
<td>SANDSTONE (Rx): very soft to soft, reddish brown, friable, slightly to moderately weathered, unfractured, [Silty SAND (SM): medium dense, reddish brown, moist]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- dense below 15 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- with pockets of gray sandstone and fine gravel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- with dark reddish pockets and frequent white coarse sand to fine gravel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLAYSTONE (Rx):</td>
<td>soft, reddish brown, slightly to moderately weathered, unfractured, [Sandy lean CLAY (CL): stiff, reddish brown, moist, with white fine gravel and coarse sand, dark reddish pockets, gray to black fragments]</td>
</tr>
</tbody>
</table>

The log and data presented are a simplification of actual conditions encountered at the time of drilling at the drilled location. Subsurface conditions may differ at other locations and with the passage of time.

Completion Depth: 31.0 ft
Depth to Water: Not Encountered
Backfilled With: Cuttings
Drilled By: S/G Drilling Company
Logged By: T Ferro
Checked By: G S Denlinger

LOG OF DRILL HOLE NO. DH-1A
East Cat Canyon Sisquoc Area
Santa Barbara County, California

PLATE A-1
LOCATION: N 34.824 E 120.289 WGS84
SURFACE EL: 706 ft +/- (rel. MSL datum)

MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>ELEVATION, ft</th>
<th>DEPTH, ft</th>
<th>MATERIAL SYMBOL</th>
<th>SAMPLE NO.</th>
<th>SAMPLER</th>
<th>BLOW COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>-704</td>
<td>2</td>
<td>A</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-702</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-700</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-698</td>
<td>8</td>
<td></td>
<td>(47)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-696</td>
<td>10</td>
<td></td>
<td>(50/5.5)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>-694</td>
<td>12</td>
<td></td>
<td></td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>-692</td>
<td>14</td>
<td></td>
<td></td>
<td>6</td>
<td>(34)</td>
</tr>
<tr>
<td>-690</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-688</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-686</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-684</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-682</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-680</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-678</td>
<td>28</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-676</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-674</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARTIFICIAL FILL (af)
Silty SAND (SM): brown, dry, oiled

ARTIFICIAL FILL (af)/COLLUVIUM (Qcol)
Silty SAND (SM): loose, reddish brown, dry, fine to medium, with some fine chert gravel

PASO ROBLES FORMATION (Qtp)
SANDSTONE (Rx): very soft to soft, reddish brown, slightly to moderately weathered, unfractured, [Silty SAND (SM): dense, reddish brown, fine to medium, moist, with some fine chert gravel]
- with light gray sand pockets

CLAYSTONE (Rx): soft, reddish brown, slightly to moderately weathered, unfractured, [Clayey SAND (SC): very dense, reddish brown, moist, fine to medium]

CLAYSTONE (Rx): soft, reddish brown, slightly to moderately weathered, unfractured, [Sandy lean CLAY (CL): stiff to very stiff, reddish brown, moist, with occasional fine gravel and light gray fine sand pockets]
- increased sand content

The log and data presented are a simplification of actual conditions encountered at the time of drilling at the drilled location. Subsurface conditions may differ at other locations and with the passage of time.

COMPLETION DEPTH: 31.0 ft
DEPTH TO WATER: Not Encountered
BACKFILLED WITH: Cuttings
DRILLING DATE: November 26, 2013
DRILLING METHOD: 8-inch-dia. Hollow Stem Auger
HAMMER TYPE: 140 lb Automatic Trip
DRILLED BY: S/G Drilling Company
LOGGED BY: T Ferro
CHECKED BY: G S Denlinger

LOG OF DRILL HOLE NO. DH-1B
East Cat Canyon Sisquoc Area
Santa Barbara County, California

PLATE A-2
LOCATION: N 34.829 E 120.285 WGS84

SURFACE EL: 1078 ft +/- (rel. MSL datum)

<table>
<thead>
<tr>
<th>ELEVATION, ft</th>
<th>DEPTH, ft</th>
<th>MATERIAL SYMBOL</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1076</td>
<td>2</td>
<td>A</td>
<td>ARTIFICIAL FILL (af)</td>
</tr>
<tr>
<td>-1074</td>
<td>4</td>
<td>1, 50/4"</td>
<td>Silty SAND (SM): brown, dry</td>
</tr>
<tr>
<td>-1072</td>
<td>6</td>
<td></td>
<td>OLDER ALLUVIUM (Qoal)</td>
</tr>
<tr>
<td>-1070</td>
<td>8</td>
<td></td>
<td>Poorly graded SAND with gravel (SP): dense to very dense, reddish brown, dry, fine to medium, fine gravel, weakly consolidated</td>
</tr>
<tr>
<td>-1068</td>
<td>10</td>
<td>2, (68)</td>
<td>- bluish gray, petroleum odor</td>
</tr>
<tr>
<td>-1066</td>
<td>12</td>
<td></td>
<td>- dark reddish brown, strong petroleum odor</td>
</tr>
<tr>
<td>-1064</td>
<td>14</td>
<td>3, 54</td>
<td>- gray, petroleum odor</td>
</tr>
<tr>
<td>-1062</td>
<td>16</td>
<td></td>
<td>Poorly graded GRAVEL with clay and sand (GP-GC): medium dense to dense, dark reddish brown and gray</td>
</tr>
<tr>
<td>-1060</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1058</td>
<td>20</td>
<td>4, 22</td>
<td></td>
</tr>
<tr>
<td>-1056</td>
<td>22</td>
<td>5, (66)</td>
<td></td>
</tr>
</tbody>
</table>

DETECTION:
-ヶ30% passing #200 sieve
-ヶ950
-ヶ132
-ヶ230

LOG OF DRILL HOLE NO. DH-2A

East Cat Canyon Sisquoc Area
Santa Barbara County, California

COMPLETION DEPTH: 24.0 ft

DEPTH TO WATER: Not Encountered

BACKFILLED WITH: Cuttings

DRILLING DATE: November 26, 2013

DRILLING METHOD: 8-inch-dia. Hollow Stem Auger

HAMMER TYPE: 140 lb Automatic Trip

DRILLED BY: S/G Drilling Company

LOGGED BY: T Ferro

CHECKED BY: G S Denlinger

PLATE A-3
<table>
<thead>
<tr>
<th>ELEVATION, ft</th>
<th>DEPTH, ft</th>
<th>MATERIAL SYMBOL</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1056</td>
<td>2</td>
<td></td>
<td>ARTIFICIAL FILL (af)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silty SAND (SM): brown, dry</td>
</tr>
<tr>
<td>-1054</td>
<td>4</td>
<td>38</td>
<td>OLDER ALLUVIUM (Qoal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dense, dark brown and yellowish brown, dry, some fine gravel, weakly consolidated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- petroleum odor</td>
</tr>
<tr>
<td>-1052</td>
<td>6</td>
<td></td>
<td>Sandy SILT (ML): very dense/hard, light reddish brown to yellowish brown, dry to moist, some fine gravel</td>
</tr>
<tr>
<td>-1050</td>
<td>8</td>
<td></td>
<td>PASO ROBLES FORMATION (Qtp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SANDSTONE (Rx): soft, light reddish brown, slightly to moderately weathered, unfractured, [Silty SAND (SC-SM): dense to very dense, light reddish brown, moist, fine]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- reddish brown, fine to medium-grained</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- increased clay content, with some fine black gravel at 26 feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- reduced clay content</td>
</tr>
</tbody>
</table>

The log and data presented are a simplification of actual conditions encountered at the time of drilling at the drilled location. Subsurface conditions may differ at other locations and with the passage of time.

LOG OF DRILL HOLE NO. DH-2B
East Cat Canyon Sisquoc Area
Santa Barbara County, California

COMPLETION DEPTH: 31.0 ft
DEPTH TO WATER: Not Encountered
BACKFILLED WITH: Cuttings
DRILLING DATE: November 26, 2013

DRILLING METHOD: 8-in-dia. Hollow Stem Auger
HAMMER TYPE: 140 lb Automatic Trip
DRILLED BY: S/G Drilling Company
LOGGED BY: T Ferro
CHECKED BY: G S Denlinger
<table>
<thead>
<tr>
<th>ELEVATION, ft</th>
<th>DEPTH, ft</th>
<th>MATERIAL SYMBOL</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>ARTIFICIAL FILL (af) Silty SAND (SM): brown, dry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Sandy, silt CLAY (CL-ML): medium stiff, dark gray to black, dry to moist, with greenish gray fine gravel and oil sand pockets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>COLLUVIUM (Qcol) Silty SAND (SM): loose, brown, dry to moist, fine to medium, with few fine gravel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>- moist, petroleum odor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>- fine-grained sand, with few greenish gray silt pockets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>- with lenses of greenish gray clay</td>
</tr>
</tbody>
</table>

The log and data presented are a simplification of actual conditions encountered at the time of drilling at the drilled location. Subsurface conditions may differ at other locations and with the passage of time.

LOG OF DRILL HOLE NO. DH-3
East Cat Canyon Sisquoc Area
Santa Barbara County, California

The log and data presented are a simplification of actual conditions encountered at the time of drilling at the drilled location. Subsurface conditions may differ at other locations and with the passage of time.

COMPLETION DEPTH: 31.5 ft
DEPTH TO WATER: Not Encountered
BACKFILLED WITH: Cuttings
DRILLING DATE: November 26, 2013

DRILLING METHOD: 8-inch-dia. Hollow Stem Auger
HAMMER TYPE: 140 lb Automatic Trip
DRILLED BY: S/G Drilling Company
LOGGED BY: T Ferro
CHECKED BY: G S Denlinger
CARREAGA FORMATION GRACIOSA MEMBER (Toq)

SANDSTONE (Rx): Soft, brown to reddish brown, slightly to moderately weathered, unfractured, [Silty SAND (SM): medium dense, brown to reddish brown, moist, with some fine gravel]

SANDSTONE (Rx): Dense, reddish brown, moist, [Clayey SAND (SC): dense, reddish brown, moist, with fine gravel and light brown to gray sand pockets, some chert gravels]

<table>
<thead>
<tr>
<th>ELEVATION, ft</th>
<th>DEPTH, ft</th>
<th>MATERIALSYMBOL</th>
<th>SAMPLER</th>
<th>PLASTICITY INDEX, %</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>664</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>662</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>660</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>658</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>656</td>
<td>10</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>654</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>652</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>16</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The log and data presented are a simplification of actual conditions encountered at the time of drilling at the drilled location. Subsurface conditions may differ at other locations and with the passage of time.

LOG OF DRILL HOLE NO. DH-4

East Cat Canyon Sisquoc Area
Santa Barbara County, California

LOCATION: N 34.828 E 120.289 WGS84
SURFACE EL: 666 ft +/- (rel. MSL datum)

DEPTHTO WATER: Not Encountered
BACKFILLED WITH: Cuttings
DRILLING DATE: November 26, 2013
APPENDIX B
LABORATORY TESTING
<table>
<thead>
<tr>
<th>DRILL HOLE</th>
<th>DEPTH, ft</th>
<th>SAMPLE NUMBER</th>
<th>MATERIAL DESCRIPTION</th>
<th>UWW pcf</th>
<th>UDW pcf</th>
<th>MC %</th>
<th>FINES %</th>
<th>ATTERBERG LIMITS</th>
<th>COMPACTION TEST</th>
<th>DIRECT SHEAR</th>
<th>COMPRESSIVE SHEAR TESTS</th>
<th>CORROSION TESTS</th>
<th>EXPANSION INDEX</th>
<th>SAND EQUIVALENT (SE)</th>
<th>SPECIFIC GRAVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH-1A</td>
<td>0.0</td>
<td>A</td>
<td>Silty SAND (SM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>127.9</td>
<td>8.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-1A</td>
<td>5.0</td>
<td>A</td>
<td>Silty SAND (SM)</td>
<td></td>
</tr>
<tr>
<td>DH-1A</td>
<td>10.0</td>
<td>2</td>
<td>Silty SAND (SM)</td>
<td>121</td>
<td>114</td>
<td>6</td>
<td>0.4</td>
<td>4837</td>
<td>6.30</td>
<td>3 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-1A</td>
<td>20.5</td>
<td>4</td>
<td>SANDSTONE (Rx) [Silty SAND (SM)]</td>
<td>128</td>
<td>115</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-1A</td>
<td>30.0</td>
<td>6</td>
<td>Sandy Lean CLAY (CL)</td>
<td>127</td>
<td>105</td>
<td>21</td>
<td>35 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-1B</td>
<td>10.5</td>
<td>2</td>
<td>SANDSTONE (Rx) [Silty SAND (SM)]</td>
<td>126</td>
<td>116</td>
<td>9</td>
<td>30</td>
<td>30</td>
<td>124 112 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-1B</td>
<td>20.5</td>
<td>4</td>
<td>SANDSTONE (Rx) [Silty SAND (SM)]</td>
<td>124</td>
<td>112</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-1B</td>
<td>30.5</td>
<td>6</td>
<td>CLAYSTONE (Rx) [Sandy Lean CLAY (CL)]</td>
<td>130</td>
<td>110</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-2A</td>
<td>10.5</td>
<td>2</td>
<td>Poorly graded SAND with gravel (SP)</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>DH-2A</td>
<td>23.5</td>
<td>5</td>
<td>Poorly graded GRAVEL with clay and sand (GP-GC)</td>
<td>116</td>
<td>92</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-2B</td>
<td>10.5</td>
<td>2</td>
<td>Sandy SILT (ML)</td>
<td>119</td>
<td>111</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-2B</td>
<td>20.5</td>
<td>4</td>
<td>SANDSTONE (Rx) [Silty SAND (SM)]</td>
<td>127</td>
<td>112</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-2B</td>
<td>25.5</td>
<td>5</td>
<td>SANDSTONE (Rx) [Silty SAND (SM)]</td>
<td>124</td>
<td>116</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-2B</td>
<td>30.5</td>
<td>6</td>
<td>SANDSTONE (Rx) [Silty SAND (SM)]</td>
<td>124</td>
<td>116</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-3</td>
<td>10.0</td>
<td>2</td>
<td>Silty SAND (SM)</td>
<td>117</td>
<td>110</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-3</td>
<td>20.0</td>
<td>4</td>
<td>Silty SAND (SM)</td>
<td>123</td>
<td>110</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-3</td>
<td>31.0</td>
<td>6</td>
<td>Silty SAND with gravel (SM)</td>
<td>124</td>
<td>116</td>
<td>7</td>
<td>21</td>
<td>21</td>
<td>124 116 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-4</td>
<td>5.0</td>
<td>1</td>
<td>SANDSTONE (Rx) [Silty SAND (SM)]</td>
<td>124</td>
<td>116</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-4</td>
<td>15.5</td>
<td>3</td>
<td>SANDSTONE (Rx) [Clayey SAND (SC)]</td>
<td>137</td>
<td>125</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>137 125 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY OF LABORATORY TEST RESULTS
East Cat Canyon Sisquoc Area
Santa Barbara County, California
GRAIN SIZE CURVES
East Cat Canyon Sisquoc Area
Santa Barbara County, California

LEGEND

CLASSIFICATION

Cc Cu

DH-1B 10.5 SANDSTONE (Rx) [Silty SAND (SM)]
DH-2B 25.5 SANDSTONE (Rx) [Silty Sand (SM)]
DH-4 5.0 SANDSTONE (Rx) [Silty SAND (SM)]
PLASTICITY CHART
East Cat Canyon Sisquoc Area
Santa Barbara County, California

LEGEND

CLASSIFICATION

PLASTICITY CHART

Project No. 04.62130155
East Cat Canyon Sisquoc Area
Santa Barbara County, California

Sturgeon Services International
Project No. 04.62130155

PLASTICITY LIMIT (LL)

PLASTIC LIMIT (PL)

PLASTICITY INDEX (PI)

LIQUID LIMIT (LL)

ATTERBERG LIMITS TEST RESULTS

LEGEND

location depth, ft

DH-1A 30.0

Sandy Lean CLAY (CL)

35 16 19
Sturgeon Services International
Project No. 04.62130155

Sample Number:

Sample Depth: 10.0 ft
USCS Classification: Silty SAND (SM): brown, moist, slightly cemented

Normal Stress, ksf

Peak
Min. Post-Peak: $\Phi = 30^\circ$, $c^' = 0.4$ ksf

Normal Stress, ksf

Peak
Min. Post-Peak: $\Phi = 30^\circ$, $c^' = 0.4$ ksf

Sample ID

Direct Shear Test Results
East Cat Canyon Sisquoc Area
Santa Barbara County, California

Direct Shear Test Results
East Cat Canyon Sisquoc Area
Santa Barbara County, California

Direct Shear Test Results
East Cat Canyon Sisquoc Area
Santa Barbara County, California

Sample A
Sample B
Sample C

Plasticity Index, %

2.65

Test Method: ASTM D3080

Remarks

_classification

INITIAL

Water Content, %
A
B
C
D
6.1%
6.1%
6.1%

Dry Unit Weight, pcf
A
B
C
D
112.5
113.1
115.4

Saturation, %
A
B
C
D
34%
35%
37%

Void Ratio
A
B
C
D
0.47
0.46
0.43

Diameter, in
A
B
C
D
2.42
2.42
2.42

Height, in
A
B
C
D
1.00
1.00
1.00

FINAL

Water Content, %
A
B
C
13.7%
13.7%
12.5%

Dry Unit Weight, pcf
A
B
C
D
119.5
119.4
123.7

Void Ratio
A
B
C
D
0.38
0.38
0.34

Displacement at Peak, in
A
B
C
D
0.25
0.10
0.09

Displacement Rate, in/min
A
B
C
D
0.002
0.002
0.002

Normal Stress, ksf
A
B
C
D
1.0
2.0
4.0

Peak Shear Stress, ksf
A
B
C
D
1.01
1.56
3.47

Min. Post-Peak Stress, ksf
A
B
C
D
1.01
1.46
2.70

Strain at Nomal Stress, %
A
B
C
D
3.9%
4.2%

Strain at Normal Stress w/ H2O, %
A
B
C
D
5.0%
5.4%

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8-in. (9.5mm)</td>
<td>---</td>
</tr>
<tr>
<td>#4 (4.75mm)</td>
<td>100</td>
</tr>
<tr>
<td>#16 (1.18mm)</td>
<td>96</td>
</tr>
<tr>
<td>#30 (0.6mm)</td>
<td>85</td>
</tr>
<tr>
<td>#100 (0.150mm)</td>
<td>31</td>
</tr>
<tr>
<td>#200 (0.075mm)</td>
<td>22</td>
</tr>
</tbody>
</table>

Atterberg Limits

Liquid Limit, %

Plastic Limit, %

Plasticity Index, %

Estimated Gs
2.65

K_{avg} 20°C, cm/sec

Test Method: ASTM D3080

Remarks

Boring Number: DH-1A
Sample Number: 2
Sample Depth: 10.0 ft
USCS Classification: Silty SAND (SM): brown, moist, slightly cemented

Direct Shear Test Results
East Cat Canyon Sisquoc Area
Santa Barbara County, California

PLATE B-4a
CONSOLIDATION TEST RESULTS

East Cat Canyon Sisquoc Area
Santa Barbara County, California

<table>
<thead>
<tr>
<th>Boring, Sample, Depth</th>
<th>USCS Classification</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH-1A, #6, 30.0 ft</td>
<td>Sandy lean CLAY (CL): brown, moist</td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY

<table>
<thead>
<tr>
<th>Properties</th>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Content, %</td>
<td>20.7%</td>
<td>20.8%</td>
</tr>
<tr>
<td>Dry Unit Weight, pcf</td>
<td>104.5</td>
<td>106.8</td>
</tr>
<tr>
<td>Saturation, %</td>
<td>94%</td>
<td>100%</td>
</tr>
<tr>
<td>Void Ratio</td>
<td>0.59</td>
<td>0.56</td>
</tr>
<tr>
<td>Diameter, in</td>
<td>2.42</td>
<td>2.42</td>
</tr>
<tr>
<td>Height, in</td>
<td>0.81</td>
<td>0.79</td>
</tr>
</tbody>
</table>

REMARKS

- Test Method: D2435

Preliminary Test Results

<table>
<thead>
<tr>
<th>Preconsolidation Pressure, ksf</th>
<th>Inundation Increment, ksf</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>2.07</td>
</tr>
</tbody>
</table>

| Test Method: D2435 |

<table>
<thead>
<tr>
<th>Liquid Limit</th>
<th>Plastic Limit</th>
<th>Plasticity Index</th>
<th>Passing #200</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>16</td>
<td>19</td>
<td>---</td>
</tr>
</tbody>
</table>

USCS Classification
- Sandy lean CLAY (CL): brown, moist

Test Method
- D2435
COMPACTION TEST RESULTS

East Cat Canyon Sisquoc Area
Santa Barbara County, California

LEGEND

CLASSIFICATION

MAXIMUM UNIT
DRY WEIGHT, pcf

OPTIMUM WATER
CONTENT, %

(legend)

(location)

 depth, ft

 0

Silty SAND (SM)

127.9

8.1

PLATE B-6
APPENDIX C
RESULTS OF ANALYTICAL TESTING
On December 13, 2013, Capco Analytical Services, Inc. (CAS), received three (3) samples to be analyzed. The samples were identified and assigned the laboratory ID numbers listed below:

<table>
<thead>
<tr>
<th>SAMPLE DESCRIPTION</th>
<th>CAS LAB NUMBER ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH2A 20.5 FEET</td>
<td>133583-01</td>
</tr>
<tr>
<td>DP2A 21.5 FEET</td>
<td>133583-02</td>
</tr>
<tr>
<td>DH03 15 FEET</td>
<td>133583-03</td>
</tr>
</tbody>
</table>

By my signature below, I certify that the results contained in this laboratory report comply with applicable standards for certification by the California Department of Public Health's Environmental Laboratories Accreditation Program (ELAP), both technically and for completeness, and that, based on my inquiry of the person or persons directly responsible for performing the analyses, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

Keith Chin-Yuan Chang, Ph.D.
Director - Analytical Operations

If you have any further questions or concerns, please contact me at your convenience.

This report consists of 3 pages excluding the cover letter and the Chain of Custody.
TOTAL PETROLEUM HYDROCARBONS

EPA METHOD 8015M

<table>
<thead>
<tr>
<th>Compound</th>
<th>Results</th>
<th>Dilution Factor</th>
<th>PQL (mg/kg)</th>
<th>%Recovery</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS Lab # : MB-121613-s</td>
<td>Client ID : METHOD BLANK</td>
<td>TPH- C4-C12 BQL</td>
<td>1</td>
<td>5.0</td>
<td>101%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPH- C12-C22 BQL</td>
<td>1</td>
<td>10</td>
<td>86%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPH- C23+ BQL</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>CAS Lab # : 133583 -01</td>
<td>Client ID : DH2A 20.5 feet</td>
<td>TPH- C4-C12 BQL</td>
<td>1</td>
<td>5.0</td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPH- C12-C22 BQL</td>
<td>2</td>
<td>15</td>
<td>88%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPH- C23+ BQL</td>
<td>1.5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>CAS Lab # : 133583 -02</td>
<td>Client ID : DH2A 21.5 feet</td>
<td>TPH- C4-C12 23</td>
<td>1</td>
<td>5.0</td>
<td>97%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPH- C12-C22 2300</td>
<td>2</td>
<td>15</td>
<td>88%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPH- C23+ 210</td>
<td>1.5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>CAS Lab # : 133583 -03</td>
<td>Client ID : DH03 15 feet</td>
<td>TPH- C4-C12 BQL</td>
<td>1</td>
<td>5.0</td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPH- C12-C22 BQL</td>
<td>1</td>
<td>10</td>
<td>85%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPH- C23+ BQL</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

TPH C4-C12 Surrogate Control Limits for BFB: 75-125%
TPH C12+ Surrogate Control Limits for n-Undecane: 41-139%
QUALITY CONTROL REPORT
TOTAL PETROLEUM HYDROCARBONS BY EPA METHOD 8015M (GC-PID) FOR SOIL

<table>
<thead>
<tr>
<th></th>
<th>LC6</th>
<th>LCSD</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Spikes (mg/kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surrogate</td>
<td>33</td>
<td>27</td>
<td>82</td>
</tr>
<tr>
<td>8015M Spike</td>
<td>333</td>
<td>281</td>
<td>84</td>
</tr>
</tbody>
</table>

RPD: Relative percent difference

RBA
Principal Analyst

Surrogate (undecane): SV45-O
8015M Spike (petro. diesel): SV46-J

DATE EXTRACTED: 12/16/13
DATE ANALYZED: 12/16/13
QUALITY CONTROL REPORT
TOTAL PETROLEUM HYDROCARBONS BY EPA METHOD 8015M (GC-FID) FOR SOIL

Date Analyzed: 12/17/13

Surrogate (BFB): V0117E
8015M Spike (petro. GASOLINE): V0119Y

<table>
<thead>
<tr>
<th></th>
<th>LCS</th>
<th>LCSD</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spike</td>
<td>(ug)</td>
<td>(ug)</td>
</tr>
<tr>
<td>Surrogate</td>
<td>0.125</td>
<td>0.124</td>
<td>99</td>
</tr>
<tr>
<td>8015M Spike</td>
<td>20</td>
<td>25</td>
<td>124</td>
</tr>
</tbody>
</table>

BB
Principal Analyst

1536 Eastman Ave. Suite B, Ventura, California 93003 Ph: (805)644-1095 FAX: (805)644-9947
www.capcoenv.com