Service Train 2

- **Electrostatic Coalescer**
- **Produced Gas Scrubber**

Production Train 2

- **Emulsion**
- **Heater**
- **Produced Gas Cooler**
- **Treated Oil Cooler**
- **Produced Water Cooler**

Dimensions

- **12'-0"Ø x 60'-0" S/S**
- **3'-6"Ø x 12'-0" S/S**

Operating/Design Parameters

- **Pressure (PSIG):**
 - **Shell Side:**
 - **300 / 125**
 - **300 / 150**
 - **Tube Side:**
 - **300 / 300**

- **Temperature (°F):
 - **Shell Side In/Out:**
 - **406 / 406**
 - **160 / 233**
 - **160 / 245**
 - **160 / 247**
 - **Tube Side In/Out:**
 - **210 / 260**
 - **248 / 180**
 - **260 / 190**
 - **260 / 180**

- **Flow - Gas (MMSCFD):**
 - **0.500**
 - **5.0**

- **Flow - Liquid (BPD):**
 - **10,000**
 - **100**

- **Hold Capacity (BBL):**
 - **450**
 - **300**
 - **300**
 - **300**

Water/Steam Quality

- **Glycol (BPD):**
 - **8,274**
 - **2,839**
 - **19,295**
 - **30,408**

- **Non-Cond. Gas (MMSCFD):**
 - **0.0000**

- **Water SG. (W/60 F REF.):**
 - **1.003**

- **Gas MW / Steam Quality (%):**
 - **40.7**
 - **41.2**
 - **40.7**
 - **44%**

Process Parameters

- **Process DP (PSI):**
 - **5**

- **Pipe Size (IN.):**
 - **6**
 - **10**
 - **6**
 - **4**
 - **3**
 - **8**

- **Pipe Material/Spec.:**
 - **1CS2S01**
 - **3CS2S01**
 - **1CS2S01**

Remarks

- DIMENSIONS
- DESIGN & FABRICATION CODE ASME SEC. VIII
- DESIGN & FABRICATION CODE TEMA
Stream Description

OPERATING

COS/LOS TVR DISCHARGE GAS TO SOUR GAS SCRUBBER
WATER PLANT TVR DISCHARGE GAS TO SOUR GAS SCRUBBER
WCP TANK VAPORS AND OCP PRODUCED GAS TO OCP TVR SUCTION SCRUBBER
WCP TANK VAPORS AND OCP PRODUCED GAS TO OCP TVR COMPRESSORS
CONDENSATE FROM OCP TVR KO SCRUBBER TANK VAPORS AND PRODUCED GAS TO OCP TVR COMPRESSOR
CONDENSATE FROM TVR SKID INLET SCRUBBER PUMP TVR SKID COMPRESSOR DISCHARGE GAS TO DISCHARGE COOLER
COOLED TVR COMPRESSOR DISCHARGE GAS TO DISCHARGE SCRUBBER
CONDENSATE FROM TVR SKID DISCHARGE SCRUBBER
VR CONDENSATE TO SCP
OCP TVR DISCHARGE GAS TO PGTP

ITEM

COMPRESSORS
V-1500
V-1550/1560
V-1710/1720
FF-1510/1520
P-1530/1540
P-1570/1580
P-1630/1640
P-1670/1680
T-1610/1620
T-1690/1700
K-1590/1600

SERVICE
OIL PLANT TVR INLET SCRUBBER
TVR SKID INLET SCRUBBER
TVR SKID DISCHARGE SCRUBBER
SERVICE WCP VAPOR COOLING
DISCH. GAS COOLING SECTION
JACKET WATER COOLING SECTION
SERVICE OIL PLANT TVR SCRUBBER COND. PUMP
TVR SKID SCRUBBER COND. PUMP
LUBE OIL JACKET WATER SERVICE
LUBE OIL JACKET WATER SERVICE
OIL PLANT TANK

DIMENSIONS
36"Ø x 12'-0" S/S
36"Ø x 12'-0" S/S
24"Ø x 9'-0" S/S

DUTY (MBTU/HR)
200
900
120

DESIGN CAPACITY (GPM)
15
15
15

DIMENSIONS
BY VENDOR
BY VENDOR

DESIGN CAPACITY (MSCFD)
1,400

OPERATING/DESIGN PRESS (PSI)
0 / 150
0 / 150
30 / 150
0.5
1
0.5
40
40
150
40
35

OPERATING/DESIGN TEMP (°F)
120 / 350
120 / 350
120 / 350
120 / 350
120 / 321
120 / 321
137 / 120

AIRFLOW (SCFM)/TEMP IN/TEMP OUT (°F)

OPERATING/DESIGN TEMP (°F)
120 / 250
120 / 250
120 / 250
120 / 250
120 / 321

PROCESS TEMP IN/OUT (°F)
180 / 120
120 / 321
137 / 120

NPSHA/VAPOR PRESSURE (PSIA)

HOLDING CAPACITY (BBL)

FAN HP / # OF FANS
5 / 1
1

REMARKS

DESIGN & FABRICATION CODE ASME SEC. VIII
ASME SEC. VIII
ASME SEC. VIII

DESIGN & FABRICATION CODE
API 661
API 661
API 661

DESIGN & FABRICATION CODE
ANSI B73.1
ANSI B73.1
API 676
ANSI B73.1

DESIGN & FABRICATION CODE

REFERENCE DRAWINGS

ISSUED FOR REVIEW
NOT FOR CONSTRUCTION

TJ CROSS ENGINEERS
F. J. CROSS ATOMIC CONTROL
18374 CANYON FDL - SANTA CRUZ COUNTY - CALIFORNIA
11/06/93

P. O. BOX 2830
CAYUCOS, CA 93430

ISSUED: 1/11/87
PRINTED: 1/11/87
DRAWN: 1/11/87
CHECK: 1/11/87
CHECKED: 1/11/87
PUBLIC: 1/11/87

PROJECT NUMBER

ENGINEERING

DRAWING NUMBER

PDF FILE NO

FUNCTIONAL, LOCATION NO
Stream Description

Process Parameter

OPERATING

FILTERED WATER TO SAC/SAC SOFTENERS
FILTERED WATER TO SAC PRIMARY SOFTENER
SOFTENED WATER FROM SAC POLISHING SOFTENER
SAC SOFTENED WATER TO WAC POLISHER
SOFT WATER FROM WAC POLISHER
SOFT WATER TO SOFT WATER STORAGE TANK
18% BRINE TO SAC POLISHING SOFTENER
BLOCKING WATER TO PRIMARY SAC SOFTENER
BACKWASH WATER TO SAC POLISHING SOFTENER
BACKWASH WATER TO SAC PRIMARY SOFTENER
BACKWASH WATER FROM SAC POLISHING SOFTENER
BACKWASH WATER FROM SAC PRIMARY SOFTENER
SPENT BRINE FROM SAC SOFTENERS
FAST RINSE FROM SAC SOFTENERS
BACKWASH WATER FROM SAC PRIMARY SOFTENER
BACKWASH WATER FROM SAC POLISHING SOFTENER
BRINE DISPLACEMENT WATER TO SAC SOFTENERS
BRINE DISPLACEMENT FROM SAC SOFTENERS
SAC REGENERATION WASTE TO WATER INJECTION TANK

BRINE (BPD) 504 617
BRINE CONCENTRATION (WT %) 18% 0% 15%
WATER (BPD) 18,315 18,315 18,315
NON-CONDEN. GAS (MMSCFD)
WATER SG. (W/60 F REF.) 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.116 1.003 1.003 1.003 1.003
GAS MW
PRESSURE (PSIG) 65 60 45 40 20 20 80 80 60 60 80 20 20 20 80 60 60 20
TEMPERATURE (°F) 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170

NOTES:
1. AAC SOFTENER RINSE TO BE REGENERATED OFF-SITE.
Stream Description

OPERATING

FILTERED WATER TO SAC/SAC SOFTENERS
FILTERED WATER TO SAC PRIMARY SOFTENER
SOFTENED WATER FROM SAC POLISHING SOFTENER
SAC SOFTENED WATER TO WAC POLISHER
SOFT WATER FROM WAC POLISHER
SOFT WATER TO SOFT WATER STORAGE TANK
18% BRINE TO SAC POLISHING SOFTENER
BLOCKING WATER TO PRIMARY SAC SOFTENER
BACKWASH WATER TO SAC POLISHING SOFTENER
BACKWASH WATER TO SAC PRIMARY SOFTENER
BACKWASH WATER FROM SAC POLISHING SOFTENER
BACKWASH WATER FROM SAC PRIMARY SOFTENER
SPENT BRINE FROM SAC SOFTENERS
FAST RINSE FROM SAC SOFTENERS
BRINE DISPLACEMENT WATER TO SAC SOFTENERS
BRINE DISPLACEMENT FROM SAC SOFTENERS
SAC REGENERATION WASTE TO WATER INJECTION TANK

BRINE (BPD) 504 617
BRINE CONCENTRATION (WT %) 18% 0% 15%
WATER (BPD) 18,315 18,315 18,315 18,315 18,315 18,315 113 275 561 645 561 275 645 482 482 2,580
NON-CONDEN. GAS (MMSCFD)
WATER SG. (W/60 F REF.) 1.003 1. 003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.116 1.003 1.003 1.003 1.003
GA S MW
PRESSURE (PSIG) 80 60 45 40 20 20 80 80 60 60 80 20 20 20 80 60 60 20
TEMPERATURE (°F) 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170

V-4110/4130 V-4120/4140 V-4150/4160
SERVICE
SAC PRIMARY SOFTENER
SAC POLISHER SOFTENER
WAC POLISHER SOFTENER

DIMENSIONS
10'-0" Ø x 11'-0" S/S
7'-0" Ø x 11'-0" S/S
7'-0" Ø x 9'-0" S/S

OPERATING/DESIGN PRESS (PSIG) 80 / 100 60 / 100 40 / 100
OPERATING/DESIGN TEMP (°F) 180 / 239 180 / 239 180 / 239

HOLDING CAPACITY (BBL)
DESIGN FLOW-LIQUID (BPD)18,500 18,500 18,500
HOLDING CAPACITY (GAL)
DESIGN & FABRICATION CODE ASME SEC. VIII ASME SEC. VIII ASME SEC. VIII

NOTES:
1. SAC SOFTENERS REFER TO BE REGENERATED OFF-SITE.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Drop</td>
<td>36" Ø x 15'-0" S/S</td>
<td>400</td>
<td>35 / 150</td>
<td>260 / 350</td>
<td>180 / 120 / 350</td>
<td>1.5</td>
<td>120 / 350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>30" Ø x 10'-0" S/S</td>
<td></td>
<td>30 / 150</td>
<td>120 / 350</td>
<td>180 / 120 / 350</td>
<td>2.5</td>
<td>180 / 120 / 350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Rate</td>
<td></td>
</tr>
<tr>
<td>Compressors</td>
<td></td>
</tr>
<tr>
<td>Condensate</td>
<td></td>
</tr>
<tr>
<td>Steam</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Non-Condensed Gas</td>
<td></td>
</tr>
<tr>
<td>Condensate Gas</td>
<td></td>
</tr>
<tr>
<td>TVR Gas</td>
<td></td>
</tr>
<tr>
<td>Group Station 1</td>
<td></td>
</tr>
<tr>
<td>Group Station 2</td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water/Steam</td>
<td>560</td>
<td>560</td>
<td>1,120</td>
<td>560</td>
<td>560</td>
<td>1,120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condensable H.C.</td>
<td></td>
</tr>
<tr>
<td>Non-Condensed Gas</td>
<td></td>
</tr>
<tr>
<td>Water SG.</td>
<td>1.003</td>
<td>1.003</td>
<td>1.003</td>
<td>1.003</td>
<td>1.003</td>
<td>1.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas MW</td>
<td>30.3</td>
<td>30.3</td>
<td>30.3</td>
<td>18.4</td>
<td>18.4</td>
<td>18.4</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure (PSIG)</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>22</td>
<td>22</td>
<td>30</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Temperature (°F)</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>120</td>
<td>120</td>
<td>180</td>
<td>180</td>
<td>120</td>
<td>260</td>
<td>260</td>
</tr>
<tr>
<td>Line Size (IN)</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Pipe Material/Spec</td>
<td>1CS2S01</td>
</tr>
</tbody>
</table>

Stream Description

- PRODUCED GAS FROM OCP 1
- PRODUCED GAS FROM OCP 2
- PRODUCED GAS FROM COMPRESSION

<table>
<thead>
<tr>
<th>Stream Description</th>
<th>Process Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCED GAS FROM OCP 1</td>
<td>Pressure Drop</td>
</tr>
<tr>
<td>PRODUCED GAS FROM OCP 2</td>
<td>Pressure Drop</td>
</tr>
<tr>
<td>PRODUCED GAS FROM COMPRESSION</td>
<td>Pressure Drop</td>
</tr>
</tbody>
</table>

Remarks:

- DIMENSIONS
- DESIGN & FABRICATION CODE ASME SEC. VIII
- DESIGN & FABRICATION CODE API 661

Process Flow Diagram

- THERMAL CONDENSER
- FAN EXCHANGER
- V-5010
- V-5040
- FF-5020
- FF-5030
- Y-5010
- Y-5040
- COOLED GAS SCRUBBER
- PRODUCED GAS COOLER

Reference Drawings

- Issued for Review
- Not for Construction

Issued By: T.J. CROSS

Location: 5:13-186-75

Original DO No.: 5:13-186-75

Project: GAS TREATMENT FIELD DEVELOPMENT PROJECT

Section: 23

Sheet: 8

Scale: 1" = 100'
Process Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (PSIG)</td>
<td>0 / 150 0 / 150 30 / 150 35 / 150</td>
</tr>
<tr>
<td>Temperature (°F)</td>
<td>120 / 350 120 / 350 120 / 350 120 / 350</td>
</tr>
<tr>
<td>Flow-Liquid (BPD)</td>
<td>250 200 45 423 / 500</td>
</tr>
<tr>
<td>Service</td>
<td>CO2/LOS TVR, VAPOR COOLING DISCH. GAS, COOLING SECTION, JACKET WATER, COOLING SECTION, SERVICE CO2/LOS PLANT, TVR SCRUBBER, COND. PUMP, TVR SKID SCRUBBER, COND. PUMP, LUBE OIL, JACKET WATER, SERVICE CO2/LOS PLANT, OXYGEN REMOVAL</td>
</tr>
<tr>
<td>Dimensions</td>
<td>16"Ø x 9'-0" S/S 16"Ø x 9'-0" S/S 12.75"Ø x 8'-6" S/S</td>
</tr>
<tr>
<td>Duty (MBTU/HR)</td>
<td>250 200 45 MR 200</td>
</tr>
<tr>
<td>Design Capacity (GPM)</td>
<td>15 15 15 MR 15</td>
</tr>
<tr>
<td>Process DP (PSI)</td>
<td>0.5 1 0.5 MR 0.5</td>
</tr>
<tr>
<td>Design Head (PSI)</td>
<td>40 40 40 40</td>
</tr>
<tr>
<td>Operating/Design Diff. Pressure (PSI)</td>
<td>35 30 30 MR 30</td>
</tr>
<tr>
<td>Operating/Design Temp (°F)</td>
<td>120 / 350 120 / 350 120 / 350 120 / 350</td>
</tr>
<tr>
<td>Temperature (°F)</td>
<td>120 120 120 120</td>
</tr>
<tr>
<td>Holding Capacity (BBL)</td>
<td>Process Temp IN/OUT (°F) 190 / 120 307 / 120 135 / 120 NPSHA/VAPOR PRESSURE (PSIA) 14.7 / 14.2 HOLDING CAPACITY (GAL) 5 / 1 REMARKS</td>
</tr>
<tr>
<td>Design FLOW-LIQUID (BPD)</td>
<td>MR 250 MR 200 MR 45 MR 423 / 500 MR 500</td>
</tr>
<tr>
<td>Operate/Design Pressure (PSIG)</td>
<td>0 / 150 35 / 150 - / 150 BH/HP/SG 1.5 1.5 0.75 1.5</td>
</tr>
<tr>
<td>Operate/Design Temp (°F)</td>
<td>120 120 120 120</td>
</tr>
<tr>
<td>Holding Capacity (GAL)</td>
<td>Process Temp IN/OUT (°F) 190 / 120 307 / 120 135 / 120 NPSHA/VAPOR PRESSURE (PSIA) 14.7 / 14.2 HOLDING CAPACITY (GAL) 5 / 1 REMARKS</td>
</tr>
<tr>
<td>FAN HP / # OF FANS</td>
<td>5 / 1 MR 50 MR 60</td>
</tr>
<tr>
<td>Dimensions</td>
<td>16"Ø x 9'-0" S/S 16"Ø x 9'-0" S/S 12.75"Ø x 8'-6" S/S</td>
</tr>
</tbody>
</table>
| Design & Fabrication Code | **ASME SEC. VIII** **ASME SEC. VIII** **ASME SEC. VIII** **API 661** **API 661** **API 661** **ANSI B73.1** **ANSI B73.1** **API 676** **ANSI B73.1** ***ISSUED FOR REVIEW NOT FOR CONSTRUCTION***

TJCROSS INNOVATION

PROCESS FLOW DIAGRAM — CO2/LOS TVR FIELD DEVELOPMENT PROJECT

ISSUED FOR REVIEW NOT FOR CONSTRUCTION

SK-13186-91

REMARKS

VISUAL COORDINATE SYSTEM — EAST CAYON FIELD — SANTA BARBARA COUNTY — CALIFORNIA

DATE

Dwg. No.

DESIGN & FABRICATION CODE
Stream Description
- **Process Parameter**
 - TANK VAPORS TO WSP TVR COOLER
 - TANK VAPORS FROM WSP TVR COOLERS
 - TANK VAPORS FROM WSP TVR SCRUBBER
 - CONDENSATE FROM WSP TVR SCRUBBER
 - TANK VAPORS FROM TVR SKID INLET
 - SCRUBBER
 - CONDENSATE FROM TVR SKID INLET
 - SCRUBBER PUMP
 - TVR SKID COMPRESSOR
 - DISCHARGE GAS TO DISCHARGE COOLER
 - COOLED TVR COMPRESSOR DISCHARGE GAS
 - TO DISCHARGE SCRUBBER
 - WATER PLANT TVR DISCHARGE GAS
 - TO SOUR GAS SCRUBBER
 - CONDENSATE FROM TVR SKID DISCHARGE SCRUBBER
 - WATER PLANT TVR CONDENSATE TO SLOP OIL TANKS

Oil (BPD)
- **WATER/STEAM (BPD)**
 - 33
 - 33
 - 8
 - 25
 - 8
 - 8
 - 8
 - 3
 - 5
 - 30

Condensible H.C. (BPD)
- **Non-Condens. Gas (MMSCFD)**
 - 0.4230
 - 0.4230
 - 0.4230
 - 0.4230
 - 0.4230
 - 0.4230
 - 0.4230

Water SG. (W/60 F REF.)
- **GAS MW**
 - 18.4
 - 18.4
 - 18.4
 - 18.4
 - 18.4
 - 18.4
 - 18.4

Pressure (PSIG)
- **Temperature (°F)**
 - 164
 - 120
 - 120
 - 120
 - 120
 - 307
 - 120
 - 120
 - 120
 - 120

Line Size (IN)
- **Pipe Material/Spec**
 - 1CS2S01
 - 1CS2S01
 - 1CS2S01
 - 1CS2S01
 - 1CS2S01
 - 1CS2S01
 - 1CS2S01

Additional Table

Diagram Description
- **Design Parameters**
 - **Flow Min:**
 - **Flow Max:**
 - **Temperature:**

Additional Notes
- **Remarks**
 - **Dimensions**
 - **Design & Fabrication Code**

Issued for Review Not for Construction

Junction Location:
